Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing
نویسندگان
چکیده
Design of parity preserving logic based on emerging nanotechnology is very limited due to present technological limitation in tackling its high error rate. In this work, Quantum-dot cellular automata (QCA), a potential alternative to CMOS, is investigated for designing easily testable logic circuit. A novel self-testable logic structure referred to as the testable-QCA (t-QCA), using parity preserving logic, is proposed. Design flexibility of t-QCA then evaluated through synthesis of standard functions. The programmability feature of t-QCA is utilised to implement an ALU, realizing six important functions. Although the parity preservation property of t-QCA enables concurrent detection of permanent as well as the transient faults, an augmented test logic circuit (TC) using QCA primitives has been introduced to cover the cell defects in nanotechnology. Experimental results establish the efficiency of the proposed design that outperform the existing technologies in terms of design cost and test overhead. The achievement of 100% stuck-at fault coverage and the 100% fault coverage for single missing/additional cell defects in QCA layout of the t-QCA gate, address the reliability issues of QCA nano-circuit design.
منابع مشابه
Generic parity generators design using LTEx methodology: A quantum-dot cellular automata based approach
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
متن کاملGeneric parity generators design using LTEx methodology: A quantum-dot cellular automata based approach
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملNovel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata
Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Journal
دوره 45 شماره
صفحات -
تاریخ انتشار 2014